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Scanning tunneling spectroscopy (STS) provides a unique method for the investigation of the local surface-
projected electron density of states (DOS), mostly for its capability of reaching atomic resolution. Such
information is contained in a nonobvious way in STS data, and a proper understanding of the overall features
of the system (sample+tip) is mandatory in order to obtain quantitative information. Several approaches have
been proposed in the literature to tackle this problem. A common feature of these methods is that they are
mostly based on a one-dimensional (1D) WKB description of the tunneling current. We present a critical
analysis and an extension of the methods so far proposed, with the main goal of applying the results to STS
experimental data. This study has been conducted by modeling the tip-sample system within the frame of
1D-WKB theory, investigating key open issues, such as the estimation of required but usually experimentally
unknown parameters such as the tip-sample distance and the role played by the presence of a nonconstant tip
local DOS on STS data. This investigation allows us to ascertain strengths and weaknesses of the existing
methods and leads to an optimized and improved strategy which we propose for the analysis of STS data. We
tested our conclusions on STS measurements of the Si(111)-7 X7 and Au(111) surfaces, acquired with W and

Cr tips.
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I. INTRODUCTION

The possibility of measuring the local (down to atomic
resolution) electron density of states (DOS) of a surface per-
forming the so-called scanning tunneling spectroscopy (STS)
is among the most attractive features of the scanning tunnel-
ing microscope.'® The fundamental physical quantities ac-
quired are the tunneling current /(V) and the differential con-
ductivity dI(V)/dV, both as a function of the applied bias V.
In order to obtain quantitative information about the investi-
gated sample, an appropriate treatment of STS data is re-
quired. Early attempts in this direction have been proposed
soon after the invention of STS, mainly making simple use
of available experimental data. By far, among the others, the
mostly adopted estimate of the sample local density of states
(LDOS) has become the quantity (dI/dV)/(I/V), namely, the
differential conductivity divided by the total conductivity.”
On the other hand, a theoretical description of the tunneling
current is definitely required to understand the specific rela-
tion among the sample LDOS and the STS quantities, with
the goal of identifying the best recovery procedure. In the
literature STS experiments are commonly interpreted with
descriptions mostly based on a one-dimensional (1D)
Wentzel-Kramers-Brillouin (WKB) expression of the tunnel-
ing current,® leading to a number of proposed procedures
for the extraction of the sample LDOS,'*!? thanks to which
significant advances in understanding of STS data have been
made. Nevertheless these investigations still present impor-
tant limitations and a number of important open issues have
to be faced.

This paper is devoted to these subjects. After a presenta-
tion, in Sec. II, of the actual relevant state of the art, we
investigate a number of important open questions, with the
goal of obtaining a general procedure to interpret STS data;
these issues will be discussed in Sec. III. Then, in order to
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demonstrate the potentialities of the developed ideas, they
will be applied to different real experimental situations (Sec.
IV). Concluding remarks are given in Sec. V.

II. THEORETICAL FRAMEWORK

The various methods which have been proposed so far for
the recovery of the sample LDOS from STS measurements
are founded and can be discussed on the basis of the follow-
ing expression of the tunneling current:%*

eV
1(V) =Af T(&,V,z)ps(e)p,(e — eV)de. (1)
0

Here p, and p, are the sample and tip LDOSs, respectively, V
is the bias, applied to the sample with respect to the tip, A is
a proportionality dimensional coefficient which includes the
numerical constants and the tip-sample interaction area, and
T is a barrier transmission coefficient which, using a 1D-
WKB trapezoidal approximation, can be written as

T(s,V,z):exp{—k\/2;,1—’7;((1)+%/—8)J, (2)

where z is the tip-sample distance and @ is the effective
work function. This equation can be justified within the
framework of the transfer Hamiltonian approach.®%:1415

From Eq. (1) we get an expression for the differential
conductivity dI/dV which is, together with I(V), the other
quantity measured in STS experiments,
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dl
d(eV)

=A |: T(ev’ V’ Z)ps(ev)pl(o)

eV
s f ps(s)d[T(e,V,z)pt(s eV)] e 3)
0 d(eV)
We see that two different terms contribute to the differential
conductivity. The quantity of interest, namely, the sample
LDOS at the energy selected by the applied bias, p,(eV), is
contained in the first term of the right-hand side of Eq. (3).
The second one is a background term that arises from the

eV
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voltage dependence of the transmission coefficient as well as
from a nonconstant tip LDOS. The general problem of an
STS experiment is to properly extract the sample LDOS con-
tained in a nontrivial way in the differential conductivity, as
evident in Eq. (3).

A number of methods have been proposed to face this
crucial issue.”'%13 Historically, the first one is due to Stros-
cio et al.” who argued about the possibility of removing the
effects of the voltage dependence of the tunneling coeffi-
cient, normalizing the differential conductivity to the total
conductivity 1/V.'®!7 Interpreting this procedure with the
present 1D-WKB description leads to the expression

_ple) d .
dldv ps(€V)Pt(0)+J<O T(eV.V.2) d(eV)[T(s’V’Z)pt(s eV)]de
I/V - 1 eV T(S,V,z) (4)
eV fo mps(s)pz(a—e‘/)dg

From Eq. (4) it is clear that such normalized differential
conductivity is not simply related to the sample LDOS.
However, in many experimental situations, especially in the
case of semiconducting surfaces, this method leads to results
that are qualitatively in agreement with surface LDOS simu-
lated or measured with other spectroscopy techniques. For
this reason, even if this treatment lacks strong theoretical
foundation, it has become a very common tool for presenta-
tion and interpretation of STS data.

A first refinement has been provided in the work of
Ukraintsev.'? Starting from Eq. (3) he showed the possibility
of writing a symmetric expression of dI/dV with respect to
tip and sample LDOSs. From the resulting expression, an
approximate form of the differential conductivity can be ob-
tained, neglecting the effects coming from the background
term,

dl
m = A[T(@V, V’Z)pa(ev)pl(o) + T(O’ V’Z)ps(o)pt(_ EV)]
(5)

From this expression an estimate of sample and tip
LDOSs can be performed, dividing dI/dV by the transmis-
sion coefficient Ty, =A[T(eV,V,2)+T(0,V,z)] and exploit-
ing the peculiar dependence of T, on V. The resulting es-
timates for the sample and tip LDOSs are

darav dlav

(V>0) pl-eV)x

sym sym

(V<0).

(6)

This method then provides an approximate treatment for the
analysis of unoccupied states for both the sample and the tip.
From Egs. (2) and (5) it follows that Ty, is symmetrical in
the applied voltage while dI/dV curve should not since this

ps(eV) =

feature is also governed by the LDOS of the tip and the
sample at the Fermi level, as it can be observed in Eq. (5).
So, another possibility is to normalize the differential con-
ductivity using an asymmetric expression for the transmis-
sion coefficient T,;=A,T(eV,V,2)+A,T(0,V,z). Both Ty,
and T, are strongly influenced by the tip-sample distance z,
so it is necessary to make an appropriate choice for this
parameter. This problem will be discussed in detail in Sec.
1.

Koslowski et al.'? further elaborated Eq. (3) in order to
provide a more quantitative treatment of the background
term and produce an expression more explicitly related to the
sample LDOS. Using the 1D-WKB expression of 7 and the
mean value theorem for integrals, it follows that

eV
A f oo — vy L&V

. v =—fWI, (1)

where the function f(z,V)=ez\m/2k} D+eV/2-5(V)]
[2(V) depending on the particular system considered] will be
further discussed in Sec. III A. With this expression it is
possible to relate the background term in Eq. (3) with avail-
able data of the tunneling current if it is assumed that the tip
LDOS is constant. In these conditions, the extraction of the
sample LDOS then follows from Egs. (1)—(3) and (7), lead-
ing to the following relation:

1 dl 1
ATVV.p0 Lden) T @V |

ps(eV) =

Finally, the possibility of numerically resuming the
sample LDOS has been recently discussed.!>!3 In Ref. 12
from Eq. (3) the problem is formulated in terms of Volterra
equations and is numerically investigated. A method for the
extraction of both the sample and tip LDOSs is proposed and
discussed, together with some intrinsic difficulties which
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have to be faced following this approach. In Ref. 13 a nu-
merical method is developed starting directly from Eq. (1)
and is applied to the case of STS measurements of organic
layers, still assuming that the tip LDOS is constant. In that
work, the problem of properly estimating the tip-sample dis-
tance from experimental STS data is considered, referring to
the particular case of organic samples.

From this discussion it follows that several important is-
sues, which still require investigation in order to establish a
solid connection of the STS theory with real STS experi-
ments, emerge naturally: (i) the need of a general and possi-
bly simple evaluation procedure for the effective tip-sample
distance z and barrier work function ® that is of primary
importance in every normalization method based on the 1D-
WKB description; (ii) the investigation of the effects coming
from a possible nonconstant tip LDOS on STS data analysis;
(iii) a proper comparison of the various normalization proce-
dures in order to ascertain strengths and weaknesses of the
existing methods and to identify an optimized and improved
strategy which can be used for the STS analysis; and (iv) the
application of this analysis to real experimental STS data. In
Secs. III-V of the paper, all these aspects will be discussed
and developed.

III. DISCUSSION

A. Improvements of the physical model and estimate
of WKB parameters

As discussed in Sec. II, in order to perform analysis of
STS dI/dV data with methods different from the normaliza-
tion to the total conductivity, it is necessary to have a proce-
dure for estimating effective WKB parameters. First, we
need an estimation for the A coefficient. This parameter con-
tains the effective tip-sample interaction area and the numeri-
cal dimensional constant. It acts as a bridge between the tip
and the sample LDOS in Eq. (1) and the measured tunneling
current. Because this parameter is only a proportional coef-
ficient, we choose its value in order to make dI/dV, Tsym,
f(z,VI(V), and AT(eV,V,z) on the same order of magni-
tude. The estimation for the distance z between tip and
sample and the equivalent work function ® requires further
considerations. Both parameters affect the bias dependence
of the transmission coefficient in the 1D WKB description
[Eq. (2)], and consequently they influence the features of the
normalized spectra. It is important to realize the intrinsic
difficulties and limitations which arise if attempts are made
to extract these quantities directly from experiments.

In the frame of the WKB approach, the independent varia-
tion in these parameters produces similar effects on the trans-
mission coefficient; so, it is possible to assume for the sake
of simplicity an arbitrary reasonable value for one parameter
(e.g., work function), focusing our analysis on the variation
in the other one only'? (alternatively, the work function can
be measured with specific techniques or it can be separately
estimated'®). The aim of this section is to provide a simple
but consistent strategy to face this problem, discussing also
how the estimated tip-sample distance z affects the recovered
spectra. The simplifying assumption of a constant tip LDOS
will be initially considered, deferring to Sec. III B for the

PHYSICAL REVIEW B 79, 045404 (2009)

, a) |1.0

s 05

1 ’ d|
—dVdv(z=7A) b) o ELE /

——-T(0,V,z=6.9 A)

3 2 10 1 2 3 3 2 1.0 1 2 3
Energy (eV)
FIG. 1. (Color online) Estimate of WKB parameters. (a) Model
sample LDOS. (b) Simulated dI/dV (black solid line) using
z=7 A and ®=4.5 eV and corresponding fit with AT(0,V,z) (red
dashed line); estimate gives z=6.85 A. (c) Normalized dI/dV using
Eq. (6) with z=6 A (gray dotted line), z=7 A (black solid line),
and z=8 A (red dashed line). (d) Normalized dI/dV using Eq. (8)
with different f(z,V) from Eq. (9) (dashed gray line) and Eq. (10)
(solid red line). (e) dI/dV+f(z,V)I(V) (black solid line) and
AT(eV,V,z) (red dashed line) using z=6.95 A and ®=4.5 eV. In-
set (f): magnification of the negative tails. (g) Normalized dI/dV
using Eq. (8) with different z values. Inset (h): magnification of the
tails of the dI/dV+f(z,V)I(V) construction.

discussion of the more general case. We identified two dif-
ferent procedures that can be used for estimating z, which
will be called in the following fitting procedure and matching
procedure, respectively.

Fitting procedure. A first possibility, originally proposed
in Ref. 10 by Ukraintsev, is to extract z performing a fit of
the tails of dI/dV data with the symmetric or asymmetric
combination of transmission coefficients T (as discussed in
Sec. II). Best results are obtained by fitting the curves in the
bias region far from the Fermi level, where the characteristic
exponential behavior becomes clearly dominant. Very few
attempts in this direction have been tried using experimental
data.!®?% Generally speaking, problems in performing this
method arise when small bias intervals are considered and,
above all, when structures of sample and/or tip LDOS
present in the dI/dV curve are predominant and mask the
exponential behavior in the entire bias interval. As an ex-
ample of this effect, in Fig. 1(b) we show the dI/dV curve
simulated using Eq. (1) from a model sample LDOS [Fig.
1(a)] composed by two Gaussian peaks with a constant back-
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ground (and constant tip LDOS). This simulation is per-
formed using z=7 A and ®=4.5 eV. The positive voltage
region of the curve is strongly modulated by the nonconstant
sample unoccupied states and no satisfying fitting of tails is
possible, neither with symmetrical nor asymmetrical 7. This
kind of problem can be overcome performing a fit only of the
negative part of the dI/dV curve, which is less affected by
structures of the sample LDOS. Applying the fitting proce-
dure to the considered example, a value for z of 6.85 A is
obtained, in good agreement with the correct parameter. Us-
ing this information, it then becomes possible to normalize
the spectra using the symmetrical combination Ty,,,. How-
ever, distortions of the tail, often caused by the presence of
surface-projected bulk states, could generate uncertainty in
the recovery of the effective tip-sample distance. In order to
evaluate the effects of a noncorrect estimation on normalized
curves, we plot in Fig. 1(c) different reconstructed spectra
obtained with different trial tip-sample distances z and using
Eq. (6). A shift in the peaks of about 100-200 meV is present
when the estimated distance differs from the real one and a
distortion in the shape of the negative bias part of the curve
is also visible. However, it can be concluded that this nor-
malization procedure does not generate critical problems if
the estimated distance is varied in a range of =1 A with
respect to the correct value, and it is therefore capable of
providing a useful qualitative insight of STS data in the con-
sidered kind of situations.

Matching procedure. We propose an alternative approach,
which can be realized starting from Eq. (8) and exploiting
quite general arguments. We first present an improvement of
the analysis performed in Ref. 12. The analytical expression
of the f(z,V) [see Eq. (7)] obtained in this work assuming
constant tip and sample LDOSs and applying the generalized
mean value theorem is

)

2Dz, + 3)(eV)2>
96d? ’

le
z,V)=e ,—(1+
fev)=e

where z,=2(2m/#?)"?z. This expression is calculated evalu-
ating integral (7) in the second-order approximation. We ob-
tain an improved estimate of the background term by per-
forming a full analytical integration of the same equations
under the same assumptions, leading to the expression

2
HaV) = ez—" exp(a) —exp(b) ,
4 (1 -a)exp(a) — (1 —b)exp(b)
with a=—z,(®—-eV/2)"? and b=—z,(® +eV/2)"2. Both these
expressions can be used in the attempt of recovering the
sample LDOS via Eq. (8). In Fig. 1(d) we show the differ-
ence in recovered spectra using second-order-evaluated coef-
ficient and our analytical improvement starting from the
dI/dV simulated curve of Fig. 1(b) (in both normalizations
we use the correct simulated value of z and ®). Equation
(10) for f(z,V) provides a better reconstruction of the LDOS
in the negative region.

Now, we again consider the problem of the estimation of
the WKB parameters. From Eq. (8), it can be easily verified
that dI/dV+f(z,V)I(V), which depends on z, must be well
defined in sign, namely, it must be a positive quantity over

(10)
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the entire bias interval. This requirement provides an upper
limit for z. Possible values of z contained in a very small
range below this upper limit produce a strong variation in the
negative tail of dI/dV+f(z,V)I(V). It is then appropriate to
make the physical requirement that the quantity [dI/dV
+f(z,V)I(V)]/AT remain on the same order of magnitude
over the entire considered energy interval, thus avoiding the
reconstructed tail of the LDOS to become unphysically large
with respect to the rest of the spectrum. This requirement can
be satisfied if z is such that [dI/dV+f(z,V)I(V)]/AT=<1. In
conclusion, we propose to evaluate a proper interval of z
requiring 0=[dl/dV+f(z,V)I(V)]/AT=<1. This procedure
generally leads to a very small interval. As an example, we
analyze the same simulated case described in the fitting pro-
cedure according to the proposed method. In Fig. 1(e), we
show the curve dI/dV+f(z,V)I(V) using an effective tip-
sample distance of 6.95 A. Tt is visible that, using this value,
the curve remains positive in the whole interval. The most
critical part of this construction is in the negative voltage
region in which the transmission coefficient becomes about 3
orders of magnitude smaller than in the positive voltage re-
gion. In the inset of Fig. 1(f), both dI/dV+f(z,V)I(V) and
AT(eV,V,z) between -2 and -3 V are magnified and it is
visible that, using this value for z, both curves remain on the
same order of magnitude. This produces the best recovery for
sample LDOS [see solid black line curve in Fig. 1(g)].

To get a deeper insight in the effect of an error Az on the
estimate, we can evaluate analytically the variation in Eq. (8)
when 7=z+Az is used instead of z,

1 [ﬂ +f(ZV)I(V)]

AT(eV,V.5)| dV
_ pi(eV)p,(0) Af
= reny) Tarevrany V- (b

where Af=f(Z)—f(z). For Az<z, the most important contri-
bution comes from the last term and its behavior is mainly
visible at negative bias, where 1/7(z,V) becomes larger.
Since Af is a monotonic function of Az while I(V) is nega-
tive for negative bias, the overall effect is the addition of a
positive (negative) term in the negative bias region when a
lower (larger) value of the tip-sample distance is estimated.

These remarks are presented in Fig. 1(g), where the dis-
tance z is varied for the same STS curve (while ® is kept
constant at 4.5 eV). In the inset of Fig. 1(h) the voltage
region between —2 and =3 V for all the dI/dV+f(z,V)I(V)
corresponding to different z is magnified; here the differ-
ences induced by small variation in the estimated distance as
well as the critical value above which the curve becomes
negative are visible. Effect of this variation in z parameter in
normalized dI/dV is visible in Fig. 1(g). Satisfying the con-
dition previously discussed, it is possible to identify an in-
terval for the estimation of z between 6.9 and 7 A, in satis-
factory agreement with the real value used to simulate the
dl/dV curve. In this sense, the proposed method can also be
used to normalize using Eq. (6), as further discussed in Secs.
III B and III C. Also, it is interesting to note that using these
extracted z values, the shape of normalized curves in the
region above —1.5 V does not change [Fig. 1(g)]. The recon-
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FIG. 2. (Color online) Effects of nonconstant tip LDOS. (a)
Simulated dI/dV using different sample LDOS shown in the inset
[(b) model tip LDOS is composed of a constant background and a
Gaussian peak at +1 €V]. Panel (c) B, from Eq. (16) in the case of
a sharp peak in the tip unoccupied (solid black line) and occupied
states (dashed red line), respectively.

structed curve closely follows the sample LDOS.

To summarize the results of the present discussion, if a
constant tip LDOS can be assumed, it is possible to use the
negative tail of the quantity dI/dV+f(z,V)I(V) in order to
obtain a robust estimate of the tip-sample distance, imposing
the conditions 0=<[dI/dV+f(z,V)I(V)]/AT<1. This esti-
mate usually grants a good reconstruction of the sample
LDOS using Eq. (8).

B. Effects of the tip electronic structure

We have so far assumed a constant tip LDOS. Real tips
are likely to possess a nontrivial energetic structure, as re-
vealed by experimental?’ and numerical investigations??>2
of tips LDOS and by STS real data.?® In these conditions,
new contributions to the differential conductivity arise [see
Eq. (3)], the effect of which on the extraction of the sample
LDOS should be investigated. Generally speaking, the tip
electronic structure appears clearly in STS spectra when the
sample LDOS at the Fermi level is not negligible, as in the
case of a metal surface, because the tip LDOS term is essen-
tially weighted by p,(0), as it can be observed from the ap-
proximated expression contained in Eq. (5). In order to show
this important behavior, in Fig. 2(a) we display three differ-
ent simulated dI/dV curves all referring to systems in which
both the sample and the tip LDOS consist of a single Gauss-
ian peak in the unoccupied energy region over a constant
background [Fig. 2(b)]. Increasing the sample background
term [and consequently p,(0)] without varying the tip LDOS
(peak at +1 eV in the unoccupied states over a constant
background) leads to a corresponding growth of the peak in
the negative bias region of the differential conductivity,
which is generated by the tip electronic structure. Moreover,
other effects caused by the presence of both nontrivial tip
and sample LDOSs can appear in STS spectra, as it will be
discussed in the following.

In the 1D-WKB approach, nonconstant tip LDOS effects
are contained in the last term of Eq. (3). It is possible to
rewrite this expression, using Eq. (7), in order to generalize
the results of Sec. III A valid in the constant tip LDOS case,
obtaining for the differential conductivity,

PHYSICAL REVIEW B 79, 045404 (2009)

dl 1
d(eV) =AT(€V, V,Z)Pv(eV)p,(O) - ;f(Z,V)](V) +B,,

(12)
where the last contribution
eV
dlp(&—eV)]
B,=A T(e,V,z)—————d. 13
; L py(e)T(e,V,2) % € (13)

describes the tip LDOS-related effects.

In order to get a first insight, it can be useful to analyze
this term introducing some simplifying assumptions. Let us
first consider the case in which the sample LDOS p,(g) can
be considered almost constant in the energetic interval in
which d[p,(e-eV)]/d(eV)#0. Integrating by parts [Eq.
(13)], B, is given by

B,* A l T(0,V,z)p,(— eV) = T(eV,V,2)p,(0)

eV
+f —d[T(S’V’Z)]pt(s —eV)ds

0 de
2
~ AT(0,V,2)p(~ eV) = AT(eV,V,2)p,(0) + Zf (z. W1,
(14)
where the last approximate and simplified expression follows

using arguments similar to those leading to Eq. (7). Accord-
ingly, Eq. (8) can be generalized, and we obtain

: L)
ATV L dew) T
p,(0) T(0,V.z)

m@)ﬂewvg#“‘gw- (15)

~ p,(eV) +

Equation (15) is not simply proportional to p,(eV) and it
exhibits a strong dependence on the sign of the applied bias;
in particular, this normalization could strongly enhance the
p(—eV) term at negative bias, where the ratio
T(0,V)/T(eV,V) becomes greater as the bias decreases.
Since p, is evaluated at —eV, this normalization procedure
strongly enhances the visibility of the tip unoccupied states.
These properties could be used in order to recognize the
presence of a nonconstant tip electronic LDOS in a given
experimental situation.

In order to analyze in more detail the present situation, we
further assume that the tip is characterized by well-defined
peaks which, for the sake of simplicity, can be approximated
by Dirac functions. In other words, we assume that p,=p,
+72,0(e—¢,), where 7 is an appropriate constant used to
match units. For a given u, B, does not give any contribution
in the interval between Fermi level and &,, while for |eV]

lL’
>le,| Eq. (13) reduces to
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d[T(e,V,z)]

B, T(0,V,2)Ap/(— V) - n 2% led 7
&

v Cu

s

£=eV+£M
(16)

where Ap,=p,—p,. The effect of a delta state in tip LDOS
depends on its position with respect to the Fermi level, as
represented in Fig. 2(c), where the quantity in Eq. (16) is
shown for two different choices of &,. In particular, a peak in
the unoccupied states generates a negative contribution in the
negative bias range which increases (in absolute value) with
z. This could strongly interfere with z estimation by the
matching procedure, leading to values which are signifi-
cantly lower than the real one, as discussed below in more
detail.

If it cannot be assumed that the sample LDOS is almost
constant in the region where d[p,(e—eV)]/d(eV)#0, it is
possible to investigate the properties of B, still assuming that
p=p+n2,8e-g,), leading to

d
B, T(0,V,2)Ap, (- eV)p,(0) + 72, {PS(S)@T(&V,Z)
©n

d
+ T(s,V,z)—d( )PS(S)} (17)
€ 8:€#+€V

and a corresponding variation in Eq. (15). From these rela-
tions several conclusions can be drawn. At positive bias,
when T(e,V) increases exponentially with V, we expect the
presence of new contributions to the differential
conductivity,?’ related to the sample LDOS and its energy
derivative at the energy (g,+eV). This last term is dominant
because the ratio T/T'=(P-eV/2-g,)"*/z(2m/h*)"? is
larger than one in usual experimental conditions. At negative
bias, tip and sample LDOSs exchange their role and it fol-
lows that a nonconstant sample LDOS can induce extra fea-
tures related to the tip which can be observed in this region.
We want to stress that the presence of satellite peaks does not
depend on p,(0). As a consequence these additional contrib-
utes should be visible also for sample surfaces with an ener-
getic gap.

We performed a series of numerical simulations in order
to ascertain the effects induced by the presence of a noncon-
stant tip LDOS suggested by the above analysis. We organize
our discussion starting with two different and particularly
interesting situations in which both tip and sample LDOSs
are nonconstant:

(a) nonconstant features in the tip occupied and sample
unoccupied states (therefore this is the case in which both
systems produce nonconstant contributions in the positive
voltage region of dI/dV);

b) both structures are nonconstant in their unoccupied
states.

These two cases are investigated using, for both the tip
and the sample, a model LDOS composed by a constant
background plus a Gaussian peak and simulating the result-
ing STS dI/dV and normalized spectra.

(a) First, we analyze the presence of a peak in the occu-
pied states of the tip. In particular, we consider a sample
LDOS with a sharp Gaussian peak at e,=+1.5 eV and a tip
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FIG. 3. (Color online) Effects of a nonconstant tip occupied
LDOS. (a) Sample (solid black line) and tip LDOSs (red dashed
line). (b) Simulated dI/dV (z=7 A and ®=4.5 V). (c) The three
contributions to dI/dV [see Eq. (12)], the first one containing p,(eV)
(solid black line), the second one proportional to —I(V) (dashed red
line), and the third containing nonconstant tip effect (dashed-dotted
gray line). (d) Comparison of the normalized dI/dV using normal-
ization to 1/V (dashed-dotted gray line), using Eq. (6) (dashed red
line) and Eq. (8) (solid blue line).

LDOS with a peak at £,=-0.5 eV [Fig. 3(a)]. The corre-
sponding dI/dV, shown in Fig. 3(b), reveals the presence of
both the sample peak at +1.5 eV and the tip peak at
+0.5 eV. In addition, an extra feature can be observed at
&,+|e,/]=+2 eV that is mainly due to the derivative of the
sample LDOS shifted by 0.5 eV, according to the general
discussion of Egs. (15) and (17). In Fig. 3(c) the three con-
tributions to the dI/dV curve defined in Eq. (12) are shown.
The first contribution comes from the p, term times the trans-
mission coefficient T(eV,V), the second is the term propor-
tional to the tunneling current, while the third contains the
effects of the nonconstant LDOS tip, namely, the tip LDOS
as well as the extra feature resulting from the convolution of
the LDOS of the sample and the tip. It is important to note
that since in the considered situation all the various addi-
tional contributions appear only in the positive bias region,
the procedures proposed in Sec. III A for the estimation of
the effective tip-sample distance still remain valid and can be
used. The resulting normalized spectra are shown in Fig.
3(d).

(b) We now consider the case of a peak in the unoccupied
states of the tip LDOS. To understand the main features of
this configuration, we simulate a condition where both tip
and sample LDOSs exhibit a peak at +1 eV superimposed
on different constant backgrounds [see Fig. 4(a)]. The corre-
sponding dI/dV [Fig. 4(b)] shows that the typical exponen-
tial behavior is strongly modulated and an optimal exponen-
tial fit for z recovery using either the negative or positive bias
region data cannot be performed. Looking at Fig. 4(c), the
three contributions to dI/dV, as described by Eq. (12), can be
distinguished. In particular, a negative contribution is visible
in the last part of the negative bias region. This term is the
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FIG. 4. (Color online) Effect of nonconstant tip unoccupied
LDOS. (a) Sample (solid black line) and tip LDOS (red dashed
line). (b) Simulated dI/dV (z=7 A and ®=4.5 eV). (c) The three
contributions to dI/dV [see Eq. (12)], the first one containing p,(eV)
(solid black line), the second one proportional to —I(V) (dashed red
line), and the third containing nonconstant tip effect (dashed-dotted
gray line). (d) dI/dV+f(z,V)I(V) constructions obtained using dif-
ferent effective z. [(e) and (f)] Corresponding normalized dI/dV
curves using Egs. (8) and (6), respectively.

one described in Eq. (16). In this situation, the constrain
dl/dV+f(z,V)I(V) >0 discussed in Sec. III A in general
does not apply and is not verified for the correct value of the
tip-sample distance. This problem arises from the fact that
Egs. (9) and (10) have been obtained under the assumption
of constant tip and sample LDOSs. Even though these ex-
pressions work well also when the sample LDOS is not con-
stant, they are not adequate to model the presence of a non-
constant LDOS in the tip unoccupied states. In principle, a
correct estimate should be possible by re-evaluating the
function f(z,V) in the case of a model tip LDOS (e.g., the
form previously discussed). However, this solution requires
specific assumption on the tip electronic structure. Another
possibility of overcoming this problem is to evaluate the
same f(z,V) given by Eq. (10) at an effective Z=z+Az. As
already noted in Sec. IIT A, an underestimation of z produces
a positive contribution in the negative bias region and it
would balance the negative contribution coming from the
last term of Eq. (13). Now, Z is no longer a physical value but
it works as an effective parameter. (For example, in the situ-
ation described in Fig. 4(a), the constrain dI/dV
+f(z,V)I(V)>0 is satisfied for 7<4 A while z=7 A.) This
effective parameter is obtained performing a fit of the entire
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curve (not only the region with a clear exponential behavior)
with an asymmetric combination of 7 coefficient and using
the resulting estimate as an effective parameter for normal-
ization. The presence of a negative contribution to the differ-
ential conductivity also influences the normalized results. A
large negative value region, visible in Fig. 4(e), is present in
normalized dI/dV using Eq. (8) if the correct z parameter is
used, while it disappears using smaller estimated distances.
Moreover, the tip electronic structures are magnified in the
negative region, as expected from Eq. (15). On the contrary,
normalization using Eq. (6) produces spectra that are less
affected by the estimated value and the relative amplitude of
the tip and the sample LDOS are not significantly altered
[Fig. 4(f)]. These differences in the normalized data pro-
duced by different methods can be used as a hint to qualita-
tively distinguish if a feature observed in dI/dV data comes
from tip or sample LDOS.

We also want to point out that the negative term in Eq.
(16) should be responsible for a negative differential conduc-
tivity (NDR) in the negative bias region. This effect, which is
the dual of what has been previously observed by Wagner et
al."® for positive sample-tip bias, should be observed if a
pronounced structure in the unoccupied tip states is com-
bined with a large value of p,(0). In this case, the B, term can
overcome in absolute value the other two terms in Eq. (12),
producing negative values in the dI/dV curves. As an ex-
ample of this effect, the dI/dV curve relative to the last dis-
cussed case [see Fig. 4(b)] shows a NDR region at about
-2 eV.

We conclude the present discussion by commenting on
the remaining possible situations not considered yet. A sys-
tem where tip and sample LDOSs are nonconstant in the
occupied and unoccupied states, respectively (therefore, they
produce effects in the negative voltage interval of the dI/dV
curve), can be simply considered the dual of case (a) previ-
ously analyzed. In particular, here extra features can arise
and consist in a term proportional to the tip LDOS and its
derivative at energies selected by the energetic positions of
the sample peaks. Moreover, problems arise in evaluation of
the tip-sample distance because of the influence of both non-
constant tip LDOSs and extra features in the negative bias
region, but it is possible to perform a fitting of the positive
tail of the differential conductivity, extracting a satisfactory
estimate of z. Finally, we note that no particular observations
are needed in the case in which both structures are noncon-
stant only in their respective occupied states, this situation
being qualitatively similar to the constant tip LDOS case.

C. Comparison of the normalization methods

Our analysis allows the identification of various strategies
to treat STS data. In order to reach a coherent picture and
propose a comprehensive approach, we now want to com-
pare the various possibilities paying attention mainly to two
aspects: (i) capability in estimating a correct effective value
for the required tip-sample distance and (ii) reliability and
accuracy in recovering the sample and tip LDOS.

First, we summarize what has been previously observed
about the recovery of the tip-sample distance:
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Constant tip LDOS. This is the best situation: an estimate
of z can be obtained with great accuracy both fitting the
negative bias tail of the dI/dV curve (if the considered bias
interval is sufficiently large) and/or satisfying the condition
0=[dI/dV+f(z,V)I(V)]/AT=<1. In this case, z can be esti-
mated with an accuracy of 0.1-0.2 A.

Nonconstant tip LDOS. Four possible qualitatively dis-
tinct combinations of sample and tip LDOSs have been de-
scribed in which the main differences are dictated by the
relative position of tip and sample peaks in the unoccupied
and/or occupied states. If the tip has no pronounced struc-
tures in the unoccupied states, the same considerations made
for the constant tip LDOS case still apply. On the contrary, if
the tip shows electronic features in the unoccupied region
(producing effects in the negative bias interval of the differ-
ential conductivity), the negative tail of the dI/dV curve does
not allow an appropriate estimate of z. Then, it is possible
either to fit the positive tail of the curve (if the sample pre-
sents no evident structures in this region) or, elsewhere, to
perform a fit of the entire curve to extract a trial effective
value of the tip-sample distance which, in this case, acts as
an effective parameter.

The effect of a noncorrect estimated z and the presence of
a nonconstant tip LDOS can be considered for a critical com-
parison of the various normalization methods. We summarize
in four main points what has been discussed.

(a) In the presence of a constant tip LDOS (and a correct
estimated distance), use of Eq. (8) leads to a correct recon-
struction of the spectrum while Eq. (6) produces a shift of
about 0.1-0.2 eV and a pronounced damping of the sample
peak amplitude in the occupied states.

(b) The negative bias region is a critical issue for the use
of Eq. (8), and small variations in the estimate of the effec-
tive tip-sample distance produce a strong effect on the result-
ing recovered LDOS. For this reason, in this region the re-
construction obtained using Eq. (6) provides a more reliable
method.

(c) In the presence of one or more pronounced peaks in
the unoccupied states of the tip, Eq. (8) produces a strong
amplification of the tip features as well as unphysically large
(or negative) values of the reconstructed LDOS in the nega-
tive bias region. On the other hand, Eq. (6) treats symmetri-
cally the tip and sample unoccupied states, as pointed out in
Sec. II. Conversely, a strong irregularity and peak amplifica-
tion obtained using Eq. (8) for an unknown spectrum should
be an indication of the presence of a nonconstant tip LDOS.
In this case, Eq. (8) produces meaningful spectra only in the
positive bias region, while it is possible to analyze the region
V<0 using Eq. (6).

(d) A noncorrect z estimate, caused by structured tip
LDOS in the unoccupied region, produces a systematic shift
of the peaks toward greater energy values with both proce-
dures.

IV. APPLICATION TO EXPERIMENTAL DATA

From the preceding discussion we developed a general
strategy for the analysis of STS data, which is worth testing
on real measurements. In this section we consider this issue,
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FIG. 5. (Color online) STS measures of Si(111)-7 X 7 surface.
(a) dI/dV (solid black line) and asymmetric T fit (dashed red line)
(z=7.2 A and ®=4.5 eV). STS spectrum has been obtained, aver-
aging over all the nonequivalent atomic position. (b) Comparison of
the normalized dI/dV using normalization to I/V (dashed-dotted
gray line), Eq. (6) (solid red line), and Eq. (8) (dashed blue line).
Parameters have been estimated using the firting procedure.

applying these methods to real STS spectra of well-known
surfaces. Compared with previous investigations of experi-
mental data, here the main purpose is to discuss the role
played by the presence of tip-related structures in STS data.
In order to measure some of the predicted tip-related effects,
it is particularly convenient to analyze systems with the fol-
lowing requirements: (a) a nonvanishing LDOS at Fermi
level, as discussed at the beginning of Sec. III B, and (b) a
well-known electronic structure, in order to distinguish the
possible tip extra features in STS spectra. Among the others,
Si(111)-7 X7 and Au(111) surfaces fully satisfy these condi-
tions. In order to reveal the possible different behavior of a
given scanning tunneling microscopy (STM) tip in an STS
experiment, we probed these surfaces using both standard
bulk W tips and also recently proposed bulk Cr tips.?® All the
experimental data have been acquired at room temperature
(RT) using an Omicron Variable Temperature -STM in UHV
conditions (<5.0X 107" mbar). All the presented spectra
are the result of an average over tens of equivalent curves.
We start discussing a typical STS spectrum of the
Si(111)-7 X 7 surface. From photoemission spectroscopy®*~33
and STS measurements,>* 3¢ it is known that this surface
presents a complex structure and seven nonequivalent atomic
positions. Three clear peaks can be found in the surface
DOS; at +0.5 and at —0.3 eV surface states relative to the
adatom sites are found, while at about —1 eV a state attrib-
uted to rest atom states is present. Another large surface fea-
ture is situated near 2 eV, and it is superposed to surface-
projected bulk bands. Using a bulk Cr tip we have been able
to acquire spatially averaged dI/dV curves in a wide range of
applied bias from —3.5 to 3.5 V at V,=1 V and [,=0.5 nA
[Fig. 5(a)]. Exponential tails are clearly visible in the differ-
ential conductivity. In this case, no peaks appear other than
those expected from the sample LDOS; we can then assume
that the tip electronic structure used in this experiment is
almost constant in energy in the considered interval. We ex-
tracted the tip-sample distance z using both the fitting [see
Fig. 5(a)] and the matching procedure. In both cases we
found a value of 7.2 A. After having determined the needed
parameters, in Fig. 5(b) we compare the curves obtained,
normalizing the dI/dV to the total conductivity and using the
other methods discussed in this paper. The normalization to
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FIG. 6. (Color online) STS measures of Au(111) surface. (a)
dI/dV spectrum of the Au(111) reconstructed surface (solid black
line) and asymmetrical T fit (z=6.1 A and ®=4.5 eV). (b) Com-
parison of the normalized dI/dV using Eq. (6) (solid red line) and
Eq. (8) (dashed blue line). Parameters have been estimated using
the fitting procedure.

the total conductivity is always affected by a shift in the
recovered energetic position of the sample peaks. Moreover,
as already observed, sample occupied states are always
dampened using Eq. (6), while they seem to be better recov-
ered using Eq. (8). It is interesting to note how this recovery
can be achieved even for an occupied state of the sample
well below the Fermi level, as the one lying at —1 eV. At
even lower values, however, only the use of Eq. (6) produces
reliable values, while curves normalized with the other pro-
cedure become quite irregular, in agreement with the consid-
erations developed in Sec. III C (and also because the limited
dynamic range in data acquisition significantly contributes to
the irregular behavior in this negative bias region).

In order to show an example of STS data in which the
presence of the tip LDOS is clearly visible, we discuss a
measurement on the Au(l111) surface. This system has a
Shockley state that contributes to the LDOS from —0.5 eV
up to the Fermi level, while no other features are expected in
the interval between —1 and 1 eV; outside this range, surface-
projected states begin to dominate the LDOS spectrum?®’-38
(for a proper recovery of an ideal Shockley state using a
specific normalization procedure that takes into account the
peculiar energetic behavior of such surface states see Ref.
12). In Fig. 6(a) we show a dI/dV curve acquired in the bias
interval from —1.5 to 1.5 V at V;,=-0.45 V and [,=0.9 nA
using a W tip. We observe the contribution of the Shockley
peak and another structure at +0.6 eV. Since we do not ex-
pect any pronounced feature in the positive bias interval
from the sample LDOS, we attribute this second structure to
the tip LDOS. Comparing this spectrum to what has been
shown in Fig. 2, we can interpret this magnification of the tip
electronic features, observing that the presence of the Shock-
ley states strongly enhances the sample LDOS at Fermi
level. In this case the electronic structures of both the tip and
the sample are in their respective occupied states. Due to the
limited bias range we performed the z estimation, fitting the
whole curve with the asymmetrical combination of the T
coefficient [Fig. 6(a)]. The corresponding normalized curves
are shown in Fig. 6(b).

We conclude the discussion of experimental cases pre-
senting an investigation of spatially resolved STS spectra
obtained on a set of equivalent atomic positions [corner-
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FIG. 7. (Color online) STS measures of Si(111)-7 X7 corner-
faulted adatoms. [(a) and (b) V,=1V, [,=0.5 nA.] Different nor-
malized STS spectra using Eq. (6) (solid red line) and Eq. (8)
(dashed blue line). The estimated effective tip sample distances are
in the two cases z=6 A and z=5 A. (c) Model Si corner-faulted
adatom LDOS. (d) Model W tip LDOS. (e) The three contributions
to simulated dI/dV [see Eq. (12)] (z=5 A and ®=4.5 eV), the first
one containing py(eV) (solid black line), the second one propor-
tional to —I(V) (dashed red line), and the third containing noncon-
stant tip effects (dashed-dotted gray line). [(f) and (g)] Normalized
simulated dI/dV curves using, respectively, a constant tip LDOS
and the tip LDOS of panel (d). STS curves are normalized using Eq.
(6) (solid red line) and Eq. (8) (dashed blue line).

faulted (CoF) adatoms] of the Si(111)-7 X 7 surface acquired
with a W tip. Generally speaking, even if STS is capable of
probing electronic states potentially with atomic resolution,
it is quite usual, especially in RT measurements, to collect
electrons coming from atoms in a slightly larger region of
space. It is therefore common, when probing adatom elec-
tronic states on the Si(111)-7 X 7 surface, to get information
also from the surface-projected bands and also from the rest
atoms. A typical normalized spectrum of the CoF atomic
sites is presented in Fig. 7(a), where the two adatom states
previously described are clearly visible. Minor contribution
comes from the rest atom state (=1 eV) and surface-
projected band (above +0.5 eV). This kind of measurement
is in full agreement with other works presented in the
literature.>>3%3° In one particular experimental condition we
obtained the STS dI/dV curve shown in Fig. 7(b), which
shows an extra peak at +1.2 eV and a dampened zone in the
negative bias region. It is interesting to note that similar re-
sults have been reported in the literature.?®4" Since these
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structures are not expected and they are not always measured
in other spectra on equivalent sites, we attribute these fea-
tures to nonconstant tip LDOS effects due to a particular tip
configuration. We simulated an ideal situation of sample and
tip LDOSs that could reproduce the experimental data on the
basis of the known features of the Si(111)-7 X7 system and
the general discussion performed in Sec. III B. In particular,
we considered a sample LDOS composed by three Gaussian
peaks, a band edge, and a small constant background [see
Fig. 7(c)]. We first assume a flat tip LDOS: in these condi-
tions, the conventional STS spectra on CoF adatoms can be
reproduced using Eq. (1) with satisfactory agreement, as can
be observed comparing Figs. 7(a) and 7(e). Then, in order to
interpret the unconventional spectrum shown in Fig. 7(b), we
model a different tip LDOS with a constant background and
a sum of two Gaussian peaks: one at £,=0.5 eV and one at
go,=—1 eV, as shown in Fig. 7(d). The amplitude and posi-
tion of the peaks have been chosen in order to reproduce the
experimental STS observations. According to Egs. (15)—(17)
and Figs. 3 and 4, we expect to find several additional con-
tributions in the recovered spectrum coming from the quan-
tity B, (i) a peak at the position eV=—g; (ii) a reduced
value of extracted LDOS in the region below eV=—g,; (iii) a
peak at the position eV=-g,; and (iv) a contribution propor-
tional to the sample LDOS and its derivative shifted by an
amount equal to . In the considered bias interval, this last
contribution should produce an additional feature at the en-
ergetic position g,;+|e,|=1.5 eV, where £,,=0.5 eV is the
energetic position of the sample adatom unoccupied state.
Actually, modeling sample LDOS and the tip LDOS as
shown in Figs. 7(c) and 7(d), the quantity B, [Fig. 7(e)] con-
tains all these features, in particular, the dominant term com-
ing from the derivative of the sample LDOS at &, produces
a distinct feature around +1.2 eV. These considerations can
consequently explain the observed STS spectrum. Figures
7(b) and 7(g) show the experimental and modeled normal-
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ized curves, respectively, and a satisfactory agreement can be
readily appreciated. It is interesting to note that an existing
numerical investigation reported in Ref. 41 shows that a W
tip can actually arrange its last apex atoms in order to have a
relatively smooth LDOS with two sharp peaks at —0.9 and
0.2 eV.

V. CONCLUSIONS

In this paper the crucial problem of the interpretation of
the physical information contained in an STS measurement
has been considered within the framework of a 1D-WKB
description of the tunneling current. Facing a number of im-
portant issues, such as the correct estimation of the required
physical parameters and the effects of a nonconstant tip
LDOS on STS spectra, we have been able to perform a criti-
cal analysis and an extension of the methods so far consid-
ered in the literature. In this way, we are led to propose an
optimized and improved general strategy for the analysis of
STS data, which has also been used to interpret experimental
STS data from different surfaces [Si(111)-7X7 and
Au(111)] and with different STM tips (W and Cr). From the
study of such experimental data, the importance of consider-
ing the consequences of a nonconstant tip LDOS is particu-
larly evident. An interesting improvement in the recovery of
tip and sample LDOSs would be achieved, combining the
results obtained in this work with approaches based on the
use of numerical methods, such as those proposed in Refs.
12 and 13.

As a further development of the present investigation,
these results can be generalized in order to properly include
the three-dimensional (3D) spatial properties of the full sys-
tem (sample and tip), following a similar path but starting
from a more general expression of the tunneling current and
derivative, such as those which can be obtained within the
framework of the transfer Hamiltonian approach.'
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